Lesson 8.3.1

8-113. This is a discussion question. Students may or may not suggest that dividing by x - 2 will yield a quadratic factor that they can set equal to zero and solve.

8-114. See below:

a.
$$-2(-x^2) = 2x^2$$

b.
$$-3x^3 + -4x^3$$

c. See completed puzzle below.

	1	2	3	4	5
Α	×	$4x^{3}$	$+ 6x^2$	- 2x	- 5
В	2 <i>x</i>	$8x^{4}$	$12x^{3}$	$-4x^{2}$	-10x
С	- 3	$-12x^{3}$	$-18x^{2}$	6 <i>x</i>	15
	8x	4 +0 x^{3}	$-22x^{2}$	-4x	+15

8-115. See completed puzzle below. $(x-4)(2x^3-3x^2-2x+4)=2x^4-11x^3+10x^2+12x-16$

	1	2	3	4	5
Α	×	$2x^{3}$	$-3x^{2}$	-2x	+4
В	х	$2x^{4}$	$-3x^{3}$	$-2x^{2}$	4 <i>x</i>
С	- 4	$-8x^{3}$	$12x^{2}$	8 <i>x</i>	-16

$$2x^4$$
 -11 x^3 +10 x^2 +12 x -16

a. B2 is the same as the first term in the answer

b.
$$B4 + C3$$
, $-2x^2 + 12x^2$

c. Answer term
$$\#4 = 12x$$
 and $C4 = 8x$, $B5 + (8x) = 12x$, $B5 = 4x$

8-116. See completed puzzle below.

$$\frac{6x^3 + 7x^2 - 16x + 10}{2x + 5} = 3x^2 - 4x + 2 \text{ and } (2x + 5)(3x^2 - 4x + 2) = 6x^3 + 7x^2 - 16x + 10$$

8-117. See below:

a. It is the remainder

b.
$$3x^2 - 4x + 2 + \frac{8}{2x+5}$$

c.
$$2x^2 + 3x - 5 + \frac{4}{3x+1}$$

8-118. See below:

a.
$$2x^3 - x^2 + 3x - 5$$

b.
$$x^3 - 4x^2 - 8x + 2$$

c.
$$x^2 + 4x - 2 - \frac{3}{x-3}$$

d.
$$x^4 + x^3 + x^2 + x + 1$$

8-119. $2, -2 + \sqrt{3}, -2\sqrt{3}$

8-120. See below:

c.
$$(x + 7)$$

d.
$$(x^2 - 2x - 2)$$

e. Students factor given equation.

f.
$$-7, 1 \pm \sqrt{3}$$

8-121.
$$x = 1, x = \frac{1}{2}$$
, or $x = -3$

8-122. Part (c), because (-2)(3)(-5) = 30 and $(x)(x)(x) = x^3$ not $2x^3$.

8-123. (b), because 5 is a factor of the last term, but 2 and 3 are not.

8-124.
$$(x-5)(x^2-4x-1)$$
; zeros: 5, $2\pm\sqrt{5}$

8-125. See below:

a.
$$(x-2)(5x+3)$$

b.
$$-\frac{3}{5}$$
, 2

- c. Explanations vary
- d. 3 and 2 are factors of 6, while 5 is a factor of the lead coefficient.

8-126. See below:

a. See the combination histogram boxplot below. The five number summary (for the box plot) is 0, 2.75, 8, 15.7, 36.5.

- b. The distribution has a right skew and an outlier at 36.5 pounds so the center is best described by the median of 8.0 pounds and the spread by the IQR of 12.95 pounds.
- c. The median is better in this case because it is not affected by skewing and outliers.
- d. The IQR is better in this case because it is less affected by skewing and outliers than the standard deviation.
- e. If you remove the outlier from the data the mean drops to 8.7 pounds which is below the profitable minimum. You could suggest running the test a few more weeks because perhaps as people get used to the composting program they will participate even more.

8-127. See graphs below.

b.

8-128. See below:

a. See graph below.

b. Yes, it is a solution to the equation.