17. First, write the equation in the form

$$y = a(x - h)^2 + k$$

$$y = a(x - h)^2 + h.$$

 $(x - 1)^2 = 12(y - 1)$

$$\frac{1}{12}(x-1)^2 = y-1$$

$$\frac{1}{12}(x-1)^2 + 1 = y$$

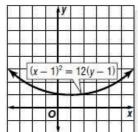
Then use the following information to draw the graph.

focus:
$$\left(1, 1 + \frac{1}{4\left(\frac{1}{12}\right)}\right)$$
 or $(1, 4)$

axis of symmetry: x = 1

directrix:
$$y=1-\frac{1}{4\left(\frac{1}{12}\right)}$$
 or $y=-2$ direction of opening: upward, since $a>0$

length of latus rectum:
$$\left|\frac{1}{\frac{1}{12}}\right|$$
 or 12 units



18. First, write the equation in the form

$$y = a(x - h)^2 + k.$$

$$y + 6 = 16(x - 3)^2$$

$$y = 16(x - 3)^2 - 6$$

Then use the following information to draw the

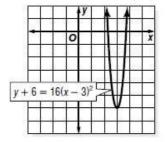
focus:
$$\left(3, -6\right)$$

focus: $\left(3, -6 + \frac{1}{4(16)}\right)$ or $\left(3, -5\frac{63}{64}\right)$
axis of symmetry: $x = 3$

directrix:
$$y = -6 - \frac{1}{4(16)}$$
 or $y = -6\frac{1}{64}$

direction of opening: upward, since a > 0

length of latus rectum: $\frac{1}{16}$ or $\frac{1}{16}$ unit



19. First, write the equation in the form

$$y = a(x - h)^2 + k.$$

$$x^2 - 8x + 8y + 32 = 0$$

$$(x^2 - 8x + 1) + 8y = -32 + 10$$

 $(x^2 - 8x + 16) + 8y = -32 + 16$

$$-8x + 16 + 8y = -32 +$$

$$(x-4)^2 + 8y = -16$$

$$8y = -(x - 4)^2 - 1$$

$$(x-4)^{2} + 8y = -16$$

$$8y = -(x-4)^{2} - 16$$

$$y = -\frac{1}{8}(x-4)^{2} - 2$$

Then use the following information to draw the graph.

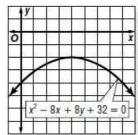
focus:
$$\left(4, -2 + \frac{1}{4\left(-\frac{1}{8}\right)}\right)$$
 or $(4, -4)$

axis of symmetry:
$$x = 4$$

directrix: $y = -2 - \frac{1}{4(-\frac{1}{8})}$ or $y = 0$

direction of opening: downward, since a < 0

length of latus rectum: $\left| \frac{1}{-\frac{1}{8}} \right|$ or 8 units



20. The equation is of the form $x = a(y - h)^2 + h$. Use the following information to draw the graph.

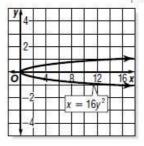
focus:
$$\left(0, \frac{1}{4(16)}, 0\right)$$
 or $\left(\frac{1}{64}, 0\right)$

axis of symmetry:
$$y = 0$$

directrix:
$$x = 0 - \frac{1}{4(16)}$$
 or $x = -\frac{1}{64}$

direction of opening: right, since a > 0

length of latus rectum: $\frac{1}{16}$ or $\frac{1}{16}$ unit



21. The vertex is at (0, 1), so h = 0 and k = 1. The focus is at (0, -1), so $k + \frac{1}{4a} = -1$. Use k to determine the value of a.

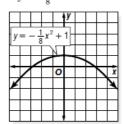
$$k + \frac{1}{4a} = -1$$

$$1 + \frac{1}{4a} = -1$$

$$\frac{1}{4a} = -2$$

$$1 = -8a$$

An equation of the parabola is $y = -\frac{1}{8}(x-0)^2 + 1$ or $y = -\frac{1}{\alpha}x^2 + 1$.



22. The center of the circle is at (2, -3) and its radius is 5 units.

$$(x - h)^{2} + (y - h)^{2} = r^{2}$$

$$(x - 2)^{2} + [y - (-3)]^{2} = 5^{2}$$

$$(x - 2)^{2} + (y + 3)^{2} = 25$$

An equation for the circle is $(x-2)^2 + (y+3)^2 = 25$.

23. The center of the circle is at (-4,0) and its radius is $\frac{3}{4}$ unit.

$$(x - h)^2 + (y - h)^2 = r^2$$
$$[x - (-4)]^2 + (y - 0)^2 = \left(\frac{3}{4}\right)^2$$
$$(x + 4)^2 + y^2 = \frac{9}{16}$$

An equation for the circle is $(x + 4)^2 + y^2 = \frac{9}{16}$

24. The center of the circle is the midpoint of the diameter.

$$(h, k) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$= \left(\frac{9 + (-3)}{2}, \frac{4 + (-2)}{2}\right)$$

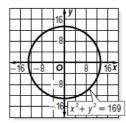
$$= \left(\frac{6}{2}, \frac{2}{2}\right)$$

$$= (3, 1)$$

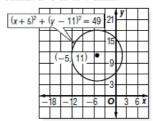
The radius is the distance from the center to one of the points.

of the points.
$$r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ = \sqrt{(9 - 3)^2 + (4 - 1)^2} \\ = \sqrt{6^2 + 3^2} \\ = \sqrt{36} + 9 \\ = 3\sqrt{5}$$

- **25.** Since the circle is tangent to the *x*-axis, its radius is 2. Since r=2, $r^2=4$. The center is at (-1,2), so h=-1 and k=2. Substitute h, k, and r^2 into the standard form of the equation of a circle. An equation of the circle is $[x-(-1)]^2+(y-2)^2=4$ or $(x+1)^2+(y-2)^2=4$.
- 26. The center of the circle is at (0,0) and the radius is $\sqrt{169}$ or 13 units.

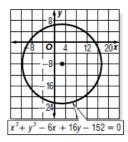


27. The center of the circle is at (-5, 11) and the radius is $\sqrt{49}$ or 7 units.



28. $x^2 + y^2 - 6x + 16y - 152 = 0$ $(x^2 - 6x + 1) + (y^2 + 16y + 1) = 152 + 1 + 10$ $(x^2 - 6x + 9) + (y^2 + 16y + 64) = 152 + 10 + 10$ $(x^2 - 3)^2 + (y^2 + 8)^2 = 225$

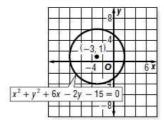
The center of the circle is at (3, -8) and the radius is $\sqrt{225}$ or 15 units.



29.
$$x^2 + y^2 + 6x - 2y - 15 = 0$$

 $(x^2 + 6x + 1) + (y^2 - 2y + 1) = 15 + 11 + 11$
 $(x^2 + 6x + 9) + (y^2 - 2y + 1) = 15 + 9 + 1$
 $(x + 3)^2 + (y - 1)^2 = 25$

The center of the circle is at (-3, 1) and the radius is $\sqrt{25}$ or 5 units.



 The center of the ellipse is the midpoint of the major axis.

$$\begin{split} (h,h) &= \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \\ &= \left(\frac{4 + (-6)}{2}, \frac{1 + 1}{2}\right) \\ &= \left(\frac{-2}{2}, \frac{2}{2}\right) \\ &= (-1, 1) \end{split}$$

The length of the major axis of an ellipse is 2a units. In this ellipse, the length of the major axis is the distance between the points at (4,1) and (-6,1). This distance is 10 units.

$$2a = 10$$

$$a = 5$$

The length of the minor axis of an ellipse is 2b units. In this ellipse, the length of the minor axis is the distance between the points at (-1,3) and (-1,-1). This distance is 4 units.

$$2b = 4$$
$$b = 2$$

Since the major axis is horizontal, the equation is of the form $\frac{(x-h)^2}{a^2}+\frac{(y-h)^2}{b^2}=1.$ An equation of the ellipse is $\frac{[x-(-1)^2]}{5^2}+\frac{(y-1)^2}{2^2}=1$ or $\frac{(x+1)^2}{25}+\frac{(y-1)^2}{4}=1.$

31. The equation is of the form $\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$. The center of the ellipse is at (0,0). Since $a^2 = 25$, a = 5. Since $b^2 = 16$, b = 4. The length of the major axis is 2(5) or 10 units. The length of the minor axis is 2(4) or 8 units. Use the equation $c^2 = a^2 - b^2$ to determine the value of c.

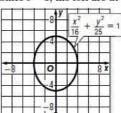
$$c^2 = a^2 - b^2$$

$$c^2 = 25 \, - \, 16$$

$$c^2 = 9$$

$$c = 3$$

Since c = 3, the foci are at (0, 3) and (0, -3).



32. The equation is of the form $\frac{(x-h)^2}{a^2} + \frac{(y-h)^2}{b^2} = 1.$

The center of the ellipse is at (-2, 3). Since $a^2 = 16$, a = 4. Since $b^2 = 9$, b = 3. The length of the major axis is 2(4) or 8 units. The length of the minor axis is 2(3) or 6 units. Use the equation $c^2 = a^2 - b^2$ to determine the value of c.

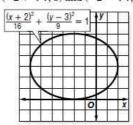
$$c^2 = a^2 - b^2$$

$$c^2 = 16 - 9$$

$$c^2 = 7$$

$$c = \sqrt{7}$$

Since $c=\sqrt{7}$, the foci are at $(-2\pm\sqrt{7},3)$, or $(-2+\sqrt{7},3)$ and $(-2-\sqrt{7},3)$.



33.
$$x^{2} + 4y^{2} - 2x + 16y + 13 = 0$$

$$(x^{2} - 2x + 1) + 4(y^{2} + 4y + 1) = -13 + 1 + 4 (1)$$

$$(x^{2} - 2x + 1) + 4(y^{2} + 4y + 4) = -13 + 1 + 4(4)$$

$$(x - 1)^{2} + 4(y + 2)^{2} = 4$$

$$\frac{(x - 1)^{2}}{4} + \frac{4(y + 2)^{2}}{4} = 1$$

$$\frac{(x - 1)^{2}}{4} + \frac{(y + 2)^{2}}{1} = 1$$

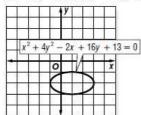
The equation is of the form $\frac{(x-h)^2}{a^2} + \frac{(y-h)^2}{b^2} = 1.$

The center is at (1, -2). Since $a^2 = 4$, a = 2. Since $b^2 = 1$, b = 1. The length of the major axis is 2(2)or 4 units. The length of the minor axis is 2(1) or 2 units. Use the equation $c^2 = a^2 - b^2$ to determine the value of c.

$$c^{2} = a^{2} - b^{2}$$

 $c^{2} = 4 - 1$
 $c^{2} = 3$
 $c = \sqrt{3}$

Since $c = \sqrt{3}$, the foci are at $(1 \pm \sqrt{3}, -2)$, or $(1+\sqrt{3},-2)$ and $(1-\sqrt{3},-2)$.



34. The transverse axis of the hyperbola is vertical, so the equation is of the form $\frac{(y-h)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$.

The center of the hyperbola is the midpoint of the segment connecting the vertices.

$$\begin{split} (h,k) &= \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \\ &= \left(\frac{2 + 2}{2}, \frac{5 + 1}{2}\right) \\ &= \left(\frac{4}{2}, \frac{6}{2}\right) \\ &= (2, 3) \end{split}$$

The length of the transverse axis is 2a units. In this hyperbola, the length of the transverse axis is the distance between the vertices. This distance is 4 units.

$$2a = 4$$
$$a = 2$$

The length of the conjugate axis of a hyperbola is 2b units. In this hyperbola, the length of the conjugate axis is 6 units.

$$2b = 6$$
$$b = 3$$

Since a = 2, $a^2 = 4$. Since b = 3, $b^2 = 9$. Substitute the values for a^2 and b^2 . An equation of the

hyperbola is
$$\frac{(y-3)^2}{4} - \frac{(x-2)^2}{9} = 1$$
.

35. The center of this hyperbola is at the origin. According to the equation, $a^2 = 4$ and $b^2 = 9$, so a = 2 and b = 3. The coordinates of the vertices are (0, 2) and (0, -2). Use the equation $c^2 = a^2 + b^2$ to determine the value of c. $c^2 = a^2 + b^2$

$$c^2 = a^2 + b$$

$$c^2 = 4 + 9$$

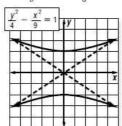
$$c^2 = 13$$

$$c^2 = 13$$

$$c = \sqrt{13}$$

Since $c = \sqrt{13}$, the foci are at $(0, \sqrt{13})$ and $(0, -\sqrt{13})$. The equations of the asymptotes are

$$y = \pm \frac{a}{b}x$$
 or $y = \pm \frac{2}{9}x$.



36. The center of this hyperbola is at (2, -1). According to the equation, $a^2 = 1$ and $b^2 = 9$, so a = 1 and b = 3. The coordinates of the vertices are $(2 \pm 1, -1)$, or (3, -1) and (1, -1). Use the equation $c^2 = a^2 + b^2$ to determine the value of c.

$$c^2 = a^2 + b^2$$
$$c^2 = 1 + 9$$

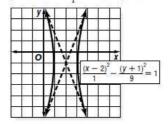
$$c^2 = 1 + c^2 = 10$$

$$c^2 = 10$$

$$c = \sqrt{10}$$

Since $c = \sqrt{10}$, the foci are at $(2 \pm \sqrt{10}, -1)$. The equations of the asymptotes are

$$y - (-1) = \pm \frac{3}{1}(x - 2)$$
 or $y + 1 = \pm 3(x - 2)$.



37.
$$9y^2 - 16x^2 = 144$$

$$\frac{9y^2}{144} - \frac{16x^2}{144} = 1$$

$$\frac{y^2}{16} - \frac{x^2}{9} = 1$$

The center of this hyperbola is at the origin. According to the equation, $a^2 = 16$ and $b^2 = 9$, so a = 4 and b = 3. The coordinates of the vertices are (0, 4) and (0, -4). Use the equation

 $c^2 = a^2 + b^2$ to determine the value of c.

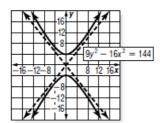
$$c^2 = a^2 + b^2$$

$$c^2=16+9$$

$$c^2 = 25$$

$$c = 5$$

Since c=5, the foci are at (0,5) and (0,-5). The equations of the asymptotes are $y=\pm\frac{4}{3}x$.



38.
$$16x^2 - 25y^2 - 64x - 336 = 0$$

 $16(x^2 - 4x + 1) - 25y^2 = 336 + 16(1)$
 $16(x^2 - 4x + 4) - 25y^2 = 336 + 16(4)$
 $16(x - 2)^2 - 25y^2 = 400$
 $\frac{16(x - 2)^2}{400} - \frac{25y^2}{400} = 1$
 $\frac{(x - 2)^2}{25} - \frac{y^2}{16} = 1$

The center of this hyperbola is at (2,0). According to the equation, $a^2=25$ and $b^2=16$, so a=5 and b=4. The vertices are at $(2\pm5,0)$, or (-3,0) and (7,0). Use the equation $c^2=a^2+b^2$ to determine the value of c.

$$c^2 = a^2 + b^2$$

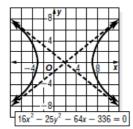
$$c^2 = 25 + 16$$

$$c^2 = 41$$

$$c^2 = 41$$

 $c = \sqrt{41}$

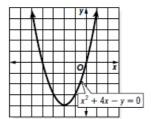
Since $c = \sqrt{41}$, the foci are at $(2 \pm \sqrt{41}, 0)$. The equations of the asymptotes are $y = \pm \frac{4}{r}(x - 2)$.



39.
$$x^2 + 4x - y = 0$$

 $(x^2 + 4x + 11) - y = 11$
 $(x^2 + 4x + 4) - y = 4$
 $(x^2 + 4x + 4) - y = 4$
 $(x^2 + 2)^2 - y = 4$
 $(x^2 + 2)^2 - 4 = y$

The graph of the equation is a parabola.

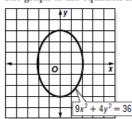


40.
$$9x^2 + 4y^2 = 36$$

$$\frac{9x^2}{36} + \frac{4y^2}{36} = 1$$

$$\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$$

The graph of the equation is an ellipse.



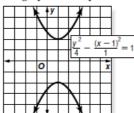
41.
$$-4x^2 + y^2 + 8x - 8 = 0$$

 $y^2 - 4(x^2 - 2x + 1) = 8 - 4(1)$
 $y^2 - 4(x^2 - 2x + 1) = 8 - 4(1)$
 $y^2 - 4(x - 1)^2 = 4$

$$\frac{y^2}{4} - \frac{4(x-1)^2}{4} = 1$$

$$\frac{y^2}{4} - \frac{(x-1)^2}{1} = 1$$

The graph of the equation is a hyperbola.



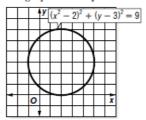
42.
$$x^2 + y^2 - 4x - 6y + 4 = 0$$

$$(x^2 - 4x + 1) + (y^2 - 6y + 1) = -4 + 1 + 1$$

$$(x^2 - 4x + 4) + (y^2 - 6y + 9) = -4 + 4 + 9$$

$$(x - 2)^2 + (y - 3)^2 = 9$$

The graph of the equation is a circle.



43. In this equation, A = 7 and C = 9. Since A and C are both positive and $A \neq C$, the graph is an ellipse.