(1) Ethods and Meanings

Math Notes

Basic Laws of Exponents

In the expression x^{3}, x is the base and 3 is the exponent.

$$
x^{3}=x \cdot x \cdot x
$$

The patterns that you have been using during this section of the book are called the laws of exponents.
Here are the basic rules with examples:

Law	Examples	
$x^{m} x^{n}=x^{m+n}$ for all x	$x^{3} x^{4}=x^{3+4}=x^{7}$	$2^{5} \cdot 2^{-1}=2^{4}$
$\frac{x^{m}}{x^{n}}=x^{m-n}$ for $x \neq 0$	$x^{10} \div x^{4}=x^{10-4}=x^{6}$	$\frac{5^{4}}{5^{7}}=5^{-3}$
$\left(x^{m}\right)^{n}=x^{m n}$ for all x	$\left(x^{4}\right)^{3}=x^{4 \cdot 3}=x^{12}$	$\left(10^{5}\right)^{6}=10^{30}$
$x^{0}=1$ for $x \neq 0$	$\frac{y^{2}}{v^{2}}=y^{0}=1$	$9^{0}=1$
$x^{-1}=\frac{1}{x}$ for $x \neq 0$	$\frac{1}{x^{2}}=\left(\frac{1}{x}\right)^{2}=\left(x^{-1}\right)^{2}=x^{-2}$	$3^{-1}=\frac{1}{3}$

