

Basic Laws of Exponents

In the expression x^3 , x is the **base** and 3 is the **exponent**.

$$x^3 = x \cdot x \cdot x$$

The patterns that you have been using during this section of the book are called the laws of exponents.

Here are the basic rules with examples:

Law	Examples	
$x^m x^n = x^{m+n}$ for all x	$x^3 x^4 = x^{3+4} = x^7$	$2^5 \cdot 2^{-1} = 2^4$
$\frac{x^m}{x^n} = x^{m-n} \text{ for } x \neq 0$	$x^{10} \div x^4 = x^{10-4} = x^6$	$\frac{5^4}{5^7} = 5^{-3}$
$(x^m)^n = x^{mn}$ for all x	$(x^4)^3 = x^{4 \cdot 3} = x^{12}$	$(10^5)^6 = 10^{30}$
$x^0 = 1$ for $x \neq 0$	$\frac{y^2}{y^2} = y^0 = 1$	9 ⁰ = 1
$x^{-1} = \frac{1}{x}$ for $x \neq 0$	$\frac{1}{x^2} = (\frac{1}{x})^2 = (x^{-1})^2 = x^{-2}$	$3^{-1} = \frac{1}{3}$