M) Ethods and Meanings

Math Notes

Compounding Interest

A bank can pay simple interest in which case the amount in the bank grows linearly. For example, 3\% simple interest compounded annually on an initial investment of $\$ 2500$ would grow in a sequence with a common difference: $0.03(2500)=\$ 75$. The equation and table follow:

$$
t(n)=2500+75 n
$$

Number of Years, n	0	1	2	3	\ldots	10
Amount in Bank, $t(n)$	2500.00	2575.00	2650.00	2725.00		3250.00

If the bank compounds interest, the relationship is exponential. For example, 3% annual interest, compounded annually, would have a multiplier of 1.03 every year. The equation and table using the example above are:

$$
t(n)=2500 \cdot 1.03^{n}
$$

Number of Years, n	0	1	2	3	\ldots	10
Amount in Bank, $t(n)$	2500	2575.00	2652.25	2731.82		3359.79

If the bank compounds monthly, the 3% annual interest becomes $\frac{3 \% / \text { year }}{12 \text { months/year }}=0.25 \%$ per month, and the multiplier becomes 1.0025 . The equation and table for the first ten years follows:

$$
\mathrm{t}(\mathrm{~m})=2500 \cdot 1.0025^{m}
$$

Number of Months, m	0	12	24	36	\ldots	120
Amount in Bank, $t(m)$	2500	2576.00	2654.39	2735.13		3373.38

